Paired many-to-many disjoint path covers in faulty hypercubes

نویسندگان

  • Shinhaeng Jo
  • Jung-Heum Park
  • Kyung-Yong Chwa
چکیده

A paired many-to-many k-disjoint path cover (k-DPC for short) of a graph is a set of k disjoint paths joining k distinct source-sink pairs that cover all the vertices of the graph. Extending the notion of DPC, we define a paired many-to-many bipartite k-DPC of a bipartite graph G to be a set of k disjoint paths joining k distinct source-sink pairs that altogether cover the same number of vertices as the maximum number of vertices covered when the source-sink pairs are given in the complete bipartite, spanning supergraph of G. We show that every m-dimensional hypercube, Qm, under the condition that f or less faulty elements (vertices and/or edges) are removed, has a paired many-to-many bipartite k-DPC joining any k distinct source-sink pairs for any f and k ≥ 1 subject to f + 2k ≤ m. This implies that Qm with m− 2 or less faulty elements is strongly Hamiltonian-laceable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paired Many-to-Many Disjoint Path Covers in Recursive Circulants and Tori

A paired many-to-many -disjoint path cover (paired -DPC) of a graph  is a set of  disjoint paths joining  distinct source-sink pairs in which each vertex of  is covered by a path. In this paper, we investigate disjoint path covers in recursive circulants   with ≥  and tori, and show that provided the number of faulty elements (vertices and/or edges) is  or less, every nonbiparti...

متن کامل

Many-to-Many Disjoint Path Covers in Two-Dimensional Bipartite Tori with a Single Vertex Fault

A paired many-to-many -disjoint path cover (-DPC for short) of a graph is a set of  disjoint paths joining  distinct source-sink pairs in which each vertex of the graph is covered by a path. A two-dimensional × torus is a graph defined as the product of two cycles  and  of length  and , respectively. In this paper, we deal with an × bipartite torus, even ≥ , with a single faul...

متن کامل

Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs

A paired many-to-many k-disjoint path cover (paired k-DPC for short) of a graph is a set of k vertex-disjoint paths joining k distinct source-sink pairs that altogether cover every vertex of the graph. We consider the problem of constructing paired 2-DPC’s in an m-dimensional bipartite HL-graph, Xm, and its application in finding the longest possible paths. It is proved that every Xm, m ≥ 4, ha...

متن کامل

Many-to-many two-disjoint path covers in restricted hypercube-like graphs

A Disjoint Path Cover (DPC for short) of a graph is a set of pairwise (internally) disjoint paths that altogether cover every vertex of the graph. Given a set S of k sources and a set T of k sinks, a many-to-many k-DPC between S and T is a disjoint path cover each of whose paths joins a pair of source and sink. It is classified as paired if each source of S must be joined to a designated sink o...

متن کامل

General-demand disjoint path covers in a graph with faulty elements

A k-disjoint path cover of a graph is a set of k internally vertex-disjoint paths which cover the vertex set with k paths and each of which runs between a source and a sink. Given that each source and sink v is associated with an integer-valued demand d(v) ≥ 1, we are concerned with general-demand k-disjoint path cover in which every source and sink v is contained in the d(v) paths. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 513  شماره 

صفحات  -

تاریخ انتشار 2013